Abstract
BACKGROUND CONTEXTDischarge to acute/intermediate care facilities is a common occurrence after posterior lumbar fusion and can be associated with increased costs and complications after these procedures. This is particularly relevant with the growing popularity of bundled payment plans, creating a need to identify patients at greatest risk. PURPOSETo develop and validate a risk-stratification tool to identify patients at greatest risk for facility discharge after open posterior lumbar fusion. STUDY DESIGNRetrospective cohort study. PATIENT SAMPLEPatients were queried using separate databases from the institution of study and the American College of Surgeons National Surgical Quality Improvement Program (NSQIP) for all patients undergoing open lumbar fusion between 2011 and 2018. OUTCOME MEASURESDischarge to intermediate care and/or rehabilitation facilities. METHODSUsing an 80:20 training and testing NSQIP data split, collected preoperative demographic and operative variables were used in a multivariate logistic regression to identify potential risk factors for postoperative facility discharge, retaining those with a p value <.05. A nomogram was generated to develop a scoring system from this model, with probability cutoffs determined for facility discharge. This model was subsequently validated within the NSQIP database, in addition to external validation at the institution of study. Overall model performance and calibration was assessed using the Brier score and calibration plots, respectively. RESULTSA total of 11,486 patients (10,453 NSQIP, 1,033 local cohort) were deemed eligible for study, of which 16.1% were discharged to facilities (16.7% NSQIP, 9.6% local cohort). Utilizing training data, age (p<.001), body mass index (p<.001), female sex (p<.001), diabetes (p=.043), peripheral vascular disease (p=.001), cancer (p=.010), revision surgery (p<.001), number of levels fused (p<.001), and spondylolisthesis (p=.049) were identified as significant risk factors for facility discharge. The area under the receiver operating characteristic curve (AUC) indicated a strong predictive model (AUC=0.750), with similar predictive ability in the testing (AUC=0.757) and local data sets (AUC=0.773). Using this tool, patients identified as low- and high-risk had a 7.94% and 33.28% incidence of facility discharge in the testing data set, while rates of 4.44% and 16.33% were observed at the institution of study. CONCLUSIONSUsing preoperative variables as predictors, this scoring system demonstrated high efficiency in risk-stratifying patients with an approximate four to fivefold difference in rates of facility discharge after posterior lumbar fusion. This tool may help inform medical decision-making and guide reimbursement under bundled-care repayment plans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.