Abstract

The study aims to introduce a novel indicator, effective withdrawal time (WTS), which measures the time spent actively searching for suspicious lesions during colonoscopy and to compare WTS and the conventional withdrawal time (WT). Colonoscopy video data from 472 patients across two hospitals were retrospectively analyzed. WTS was computed through a combination of artificial intelligence (AI) and manual verification. The results obtained through WTS were compared with those generated by the AI system. Patients were categorized into four groups based on the presence of polyps and whether resections or biopsies were performed. Bland Altman plots were utilized to compare AI-computed WTS with manually verified WTS. Scatterplots were used to illustrate WTS within the four groups, among different hospitals, and across various physicians. A parallel box plot was employed to depict the proportions of WTS relative to WT within each of the four groups. The study included 472 patients, with a median age of 55years, and 57.8% were male. A significant correlation with manually verified WTS (r=0.918) was observed in AI-computed WTS. Significant differences in WTS/WT among the four groups were revealed by the parallel box plot (P<0.001). The group with no detected polyps had the highest WTS/WT, with a median of 0.69 (interquartile range: 0.40, 0.97). WTS patterns were found to be varied between the two hospitals and among senior and junior physicians. A promising alternative to traditional WT for quality control and training assessment in colonoscopy is offered by AI-assisted computation of WTS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.