Abstract
BackgroundMultidrug-resistant tuberculosis (MDR-TB) is a global problem and a health security threat, which makes “Ending the global TB epidemic in 2035” unachievable. Globally, the unfavourable treatment outcome remains unacceptably high. Therefore, this study aimed to develop a risk prediction model for unfavorable treatment outcomes in MDR-TB patients, which can be used by clinicians as a simple clinical tool in their decision-making.ObjectiveThe objective of this study was to develop and validate a risk prediction model for the prediction of unfavorable treatment outcomes among MDR-TB patients in North-West Ethiopia.MethodsWe used MDR-TB data collected from the University of Gondar and Debre Markos referral hospitals. A retrospective follow-up study was conducted and a total of 517 patients were included in the study. STATA version 16 statistical software and R version 4.0.5 were used for the analysis. Descriptive statistics were carried out. A multivariable model was fitted using all potent predictors selected by the lasso regression method. A simplified risk prediction model (nomogram) was developed based on the binomial logit-based model, and its performance was described by assessing its discriminatory power and calibration. Finally, decision curve analysis (DCA) was done to evaluate the clinical and public health impact of the developed model.ResultsThe developed nomogram comprised six predictors: baseline anemia, major adverse event, comorbidity, age, marital status, and treatment supporter. The model has a discriminatory power of 0.753 (95% CI: 0.708, 0.798) and calibration test of (P-value = 0.695). It was internally validated by bootstrapping method, and it has a relatively corrected discrimination performance (AUC = 0.744, 95CI: 0.699, 0.788). The optimism coefficient was found to be 0.009. The decision curve analysis showed the net benefit of the model as threshold probabilities varied.ConclusionThe developed nomogram can be used for individualized prediction of unfavorable treatment outcomes in MDR-TB patients for it has a satisfactory level of accuracy and good calibration. The model is clinically interpretable and was found to have added benefits in clinical practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.