Abstract

Immune-related pneumonitis is a rare and potentially fatal adverse event associated with sintilimab. We aimed to develop and validate a nomogram for predicting the risk of immune-related pneumonitis in patients treated with sintilimab. The least absolute shrinkage and selection operator (LASSO) regression was used to determine risk factors. Multivariable logistic regression was used to establish a prediction model. Its clinical validity was evaluated using calibration, discrimination, decision, and clinical impact curves. Internal validation was performed against the validation set and complete dataset. The study included 632 patients; 59 were diagnosed with immune-related pneumonitis. LASSO regression analysis identified that the risk factors for immune-related pneumonitis were pulmonary metastases (odds ratio [OR], 4.015; 95% confidence interval [CI]: 1.725-9.340) and metastases at >3 sites (OR, 2.687; 95% CI: 1.151-6.269). The use of combined antibiotics (OR, 0.247; 95% CI: 0.083-0.738) and proton pump inhibitors (OR, 0.420; 95% CI: 0.211-0.837) were protective factors. The decision and clinical impact curves showed that the nomogram had clinical value for patients treated with sintilimab. We have developed and validated a practical nomogram model of sintilimab-associated immune-related pneumonitis, which provides clinical value for determining the risk of immune-related pneumonitis and facilitating the safe administration of sintilimab therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.