Abstract

SV2A is a glycoprotein present in the membranes of most synaptic vesicles. Although it has been highly conserved throughout evolution, its physiological role remains largely unknown. Nevertheless, Levetiracetam, a very effective anti-epileptic drug, has been recently demonstrated to bind to SV2A. At present, our understanding of the normal function of SV2A and its possible involvement in diseases like epilepsy is limited. With this study, we sought to develop a relevant model enabling analysis of SV2A’s role in the occurrence or progression of epilepsy. For this purpose, we generated a floxed SV2A mouse model with conditional alleles carrying LoxP sites around exon 3 by means of a gene-targeting strategy. The SV2A lox/lox mouse line is indistinguishable from wild-type mice. When the recombination was observed in all cells, a model of mice with both SV2A alleles floxed around exon 3 recapitulated the phenotype of SV2A KO mice, including seizures. However, the specific invalidation of SV2A in the CA3 hippocampal region was not followed by epileptic seizures or decrease in the epileptic threshold on pentylenetetrazol (PTZ) test. These results demonstrate that the floxed SV2A mouse line has been successfully established. This transgenic mouse model will be useful for investigating SV2A functions related to cell types and developmental stages.

Highlights

  • The synaptic vesicle protein 2 (SV2) family comprises transmembrane glycoproteins in three paralogs: SV2A, SV2B, and SV2C

  • We report the specific deletion of SV2A in the CA3 hippocampal region of adult mouse brains, demonstrating that the disappearance of SV2A from the CA3 region in these conditions do not lead to the onset of epileptic seizures or a decrease in the epileptic threshold, based on pentylenetetrazol (PTZ) test

  • The SV2A gene is located on chromosome 3 (Ensembl Gene Report ID: ENSMUSG00000038486) and has 13 exons spread over approximately 14kb

Read more

Summary

Introduction

The synaptic vesicle protein 2 (SV2) family comprises transmembrane glycoproteins in three paralogs: SV2A, SV2B, and SV2C. These are found in the membranes of neuronal synaptic vesicles and in secretion vesicles of endocrine cells [1]. These proteins contain a highly-glycosylated backbone measuring 80kDa. These proteins contain a highly-glycosylated backbone measuring 80kDa They possess 12 transmembrane regions (TMRs) with N[2] and C-terminal cytoplasmic sequences and a large intravesicular loop. Comparisons of the different SV2 homologs have revealed that TMRs and cytoplasmic loops are highly conserved, PLOS ONE | DOI:10.1371/journal.pone.0166525. Comparisons of the different SV2 homologs have revealed that TMRs and cytoplasmic loops are highly conserved, PLOS ONE | DOI:10.1371/journal.pone.0166525 November 18, 2016

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call