Abstract

A simple and convenient reversed-phase high-performance liquid chromatography (RP-HPLC) method for simultaneous separation, identification, and determination of sodium metabisulfite and sodium benzoate in pharmaceutical formulation has been developed and validated. Chromatographic separation was achieved on RP column Zorbax Extend C-18 (150 × 4.6 mm i.d., 3.5 μm particles), and mixture of 0.1% phosphoric acid and acetonitrile in the ratio 62:38 (v/v) was used as a mobile phase. The flow rate was set at 1.0 mL/min with detection wavelength of 275 nm. The method was successfully validated according to International Conference on Harmonization (ICH) guidelines acceptance criteria. The method is selective, as no interferences were observed at retention times corresponding to these analytes. Results of regression analyses (r) and statistical insignificance of calibration curve intercepts (p) proved linearity of the method in defined concentration ranges for sodium metabisulfite and sodium benzoate (0.05–0.15 mg/mL). Relative standard deviations calculated for both analytes in precision testing were below the limits defined for active pharmaceutical ingredients (analysis repeatability: <2%; intermediate precision: <3%). Recovery values were between 98.16% and 101.94%. According to results of robustness testing, chromatographic parameters are not significantly influenced by small variation of acetonitrile content in mobile phase, column temperature, and flow rate. Finally, the method was applied for quantitative determination of investigated preservatives in real sample analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.