Abstract
ObjectiveLife expectancy models are useful tools to support clinical decision-making. Prior models have not been used widely in clinical practice for patients with renal masses. We sought to develop and validate a model to predict life expectancy following the detection of a localized renal mass suspicious for renal cell carcinoma. Materials and methodsUsing retrospective data from 2 large centers, we identified patients diagnosed with clinically localized renal parenchymal masses from 1998 to 2018. After 2:1 random sampling into a derivation and validation cohort stratified by site, we used age, sex, log-transformed tumor size, simplified cardiovascular index and planned treatment to fit a Cox regression model to predict all-cause mortality from the time of diagnosis. The model's discrimination was evaluated using a C-statistic, and calibration was evaluated visually at 1, 5, and 10 years. ResultsWe identified 2,667 patients (1,386 at Corewell Health and 1,281 at Johns Hopkins) with renal masses. Of these, 420 (16%) died with a median follow-up of 5.2 years (interquartile range 2.2–8.3).Statistically significant predictors in the multivariable Cox regression model were age (hazard ratio [HR] 1.04; 95% confidence interval [CI] 1.03–1.05); male sex (HR 1.40; 95% CI 1.08–1.81); log-transformed tumor size (HR 1.71; 95% CI 1.30–2.24); cardiovascular index (HR 1.48; 95% CI 1.32–1.67), and planned treatment (HR: 0.10, 95% CI: 0.06–0.18 for kidney-sparing intervention and HR: 0.20, 95% CI: 0.11–0.35 for radical nephrectomy vs. no intervention). The model achieved a C-statistic of 0.74 in the derivation cohort and 0.73 in the validation cohort. The model was well-calibrated at 1, 5, and 10 years of follow-up. ConclusionsFor patients with localized renal masses, accurate determination of life expectancy is essential for decision-making regarding intervention vs. active surveillance as a primary treatment modality. We have made available a simple tool for this purpose.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Urologic Oncology: Seminars and Original Investigations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.