Abstract
The existing medical imaging tools have a detection accuracy of 97% for peritoneal metastasis(PM) bigger than 0.5cm, but only 29% for that smaller than 0.5cm, the early detection of PM is still a difficult problem. This study is aiming at constructing a deep convolution neural network classifier based on meta-learning to predict PM. Peritoneal metastases are delineated on enhanced CT. The model is trained based on meta-learning, and features are extracted using multi-modal deep Convolutional Neural Network(CNN) with enhanced CT to classify PM. Besides, we evaluate the performance on the test dataset, and compare it with other PM prediction algorithm. The training datasets are consisted of 9574 images from 43 patients with PM and 67 patients without PM. The testing datasets are consisted of 1834 images from 21 testing patients. To increase the accuracy of the prediction, we combine the multi-modal inputs of plain scan phase, portal venous phase and arterial phase to build a meta-learning-based multi-modal PM predictor. The classifier shows an accuracy of 87.5% with Area Under Curve(AUC) of 0.877, sensitivity of 73.4%, specificity of 95.2% on the testing datasets. The performance is superior to routine PM classify based on logistic regression (AUC: 0.795), a deep learning method named ResNet3D (AUC: 0.827), and a domain generalization (DG) method named MADDG (AUC: 0.834). we proposed a novel training strategy based on meta-learning to improve the model's robustness to "unseen" samples. The experiments shows that our meta-learning-based multi-modal PM predicting classifier obtain more competitive results in synchronous PM prediction compared to existing algorithms and the model's improvements of generalization ability even with limited data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computer Assisted Radiology and Surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.