Abstract

PurposeTo develop a model to predict the use of renal replacement therapy (RRT) in COVID-19 patients. Materials and methodsRetrospective analysis of multicenter cohort of intensive care unit (ICU) admissions of Brazil involving COVID-19 critically adult patients, requiring ventilatory support, admitted to 126 Brazilian ICUs, from February 2020 to December 2021 (development) and January to May 2022 (validation). No interventions were performed. ResultsEight machine learning models' classifications were evaluated. Models were developed using an 80/20 testing/train split ratio and cross-validation. Thirteen candidate predictors were selected using the Recursive Feature Elimination (RFE) algorithm. Discrimination and calibration were assessed. Temporal validation was performed using data from 2022. Of 14,374 COVID-19 patients with initial respiratory support, 1924 (13%) required RRT. RRT patients were older (65 [53-75] vs. 55 [42-68]), had more comorbidities (Charlson's Comorbidity Index 1.0 [0.00-2.00] vs 0.0 [0.00-1.00]), had higher severity (SAPS-3 median: 61 [51-74] vs 48 [41-58]), and had higher in-hospital mortality (71% vs 22%) compared to non-RRT. Risk factors for RRT, such as Creatinine, Glasgow Coma Scale, Urea, Invasive Mechanical Ventilation, Age, Chronic Kidney Disease, Platelets count, Vasopressors, Noninvasive Ventilation, Hypertension, Diabetes, modified frailty index (mFI) and Gender, were identified. The best discrimination and calibration were found in the Random Forest (AUC [95%CI]: 0.78 [0.75-0.81] and Brier's Score: 0.09 [95%CI: 0.08–0.10]). The final model (Random Forest) showed comparable performance in the temporal validation (AUC [95%CI]: 0.79 [0.75–0.84] and Brier's Score, 0.08 [95%CI: 0.08-0.1]). ConclusionsAn early ML model using easily available clinical and laboratory data accurately predicted the use of RRT in critically ill patients with COVID-19. Our study demonstrates that using ML techniques is feasible to provide early prediction of use of RRT in COVID-19 patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.