Abstract
Early disease detection in veterinary care relies on identifying subclinical abnormalities in asymptomatic animals during wellness visits. This study introduces a model designed to distinguish between wellness and other types of veterinary visits. The purpose of this study is to validate the use of a visit classification model compared to manual classification of veterinary visits by three board-certified veterinarians. The algorithm was initially trained using a Gradient Boosting Machine model with a dataset of 11,105 clinical visits from 2012 to 2017 involving 655 animals (85.3% dogs and 14.7% cats) across 544 U.S. veterinary practices. Three validators were tasked with classifying 400 visits, including both wellness and other types of visits, selected randomly from the same database used for initial model training, aiming to maintain consistency and relevance between the training and application phases; visit classifications were subsequently categorized into "wellness" or "other" based on majority consensus among validators to assess the model's performance in identifying wellness visits. The model demonstrated a specificity of 0.94 (95% CI: 0.91 to 0.96), implying its accuracy in distinguishing non-wellness visits. The model had a sensitivity of 0.86 (95% CI: 0.80 to 0.92), indicating its ability to correctly identify wellness visits as compared to the annotations provided by veterinary experts. The balanced accuracy, calculated as 0.90 (95% CI: 0.87 to 0.93), further confirms the model's overall effectiveness. The model exhibits high specificity and sensitivity, ensuring accurate identification of a high proportion of wellness visits. Overall, this model holds promise for advancing research on preventive care's role in subclinical disease identification, but prospective studies are needed for validation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.