Abstract

A highly sensitive, selective, and rugged quantification method was developed and validated for decitabine (5-aza-2'-deoxycytidine) in human plasma treated with 100μg/mL of tetrahydrouridine (THU). Chromatographic separation was accomplished using hydrophilic interaction liquid chromatography (HILIC) and detection used electrospray ionization (ESI) tandem mass spectrometry (MS/MS) by monitoring lithiated adducts of the analytes as precursor ions. The method involves simple acetonitrile precipitation steps (in an ice bath) followed by injection of the supernatant onto a Thermo Betasil Silica-100, 100×3.0mm, 5μm LC column. Protonated ([M+H](+)), sodiated ([M+Na](+)), and lithiated ([M+Li](+)) adducts as precursor ions for MS/MS detection were evaluated for best sensitivity and assay performance. During initial method development abundant sodium [M+Na](+) and potassium [M+K](+) adducts were observed while the protonated species [M+H](+) was present at a relative abundance of less than 5% in Q1. The alkali adducts were not be able to be minimized by the usual approach of increasing acid content in mobile phases. Significant analyte/internal standard (IS) co-suppression and inter-lot response differences were observed when using the sodium adduct as the precursor ion for quantification. By adding 2mM lithium acetate in aqueous mobile phase component, the lithium adduct effectively replaced other cationic species and was successfully used as the precursor ion for selected reaction monitoring (SRM) detection. The method demonstrated the separation of anomers and from other endogenous interferences using a 3-min gradient elution. Decitabine stock, working solution stabilities were investigated during method development. Three different peaks, including one from anomerization, were observed in the SRM transition of the analyte when it was in neutral aqueous solution. The assay was validated over a concentration range of 0.5-500ng/mL (or 0.44-440pg injected on column) in 50μL of human plasma. The accuracy and precision were within 8.6% relative error and 6.3% coefficient of variation, respectively. Decitabine was stable in THU treated human plasma for at least 68 days and after 5 freeze-thaw cycles when stored at -70°C. Stability of decitabine in THU treated human whole blood, matrix factor and recovery were also evaluated during method validation. The method was successfully used for clinical sample analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.