Abstract

Monitoring the levels of the ceramides (Cer) d18:1/16:0, Cer d18:1/18:0, Cer d18:1/24:0, and Cer d18:1/24:1 and ratios thereof in human plasma empowers the prediction of fatal outcome of coronary artery disease (CAD). We describe a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) methodology for clinical-scaled measurement of the four distinct ceramides. Rapid plasma precipitation was accomplished in 96-well format. Excellent extraction recoveries in the range of 98-109% were achieved for each ceramide. Addition of corresponding D7-labeled ceramide standards facilitated precise quantification of each plasma ceramide species utilizing a novel short 5-min LC-MS/MS method. Neither matrix interference nor carryover was observed. Robust intra- and inter-assay accuracy and precision <15% at five different concentrations were obtained. Linear calibration lines with regressions, R(2) > 0.99, were achieved for all analytes. Short-term bench top, long-term plasma, and extract stability demonstrated that the distinct ceramides were stable in the conditions evaluated. The validity of the methodology was demonstrated by determining the precise ceramide concentrations in a small CAD case-control study. Thus, our LC-MS/MS methodology features simple sample preparation and short analysis time for accurate quantification of Cer d18:1/16:0, Cer d18:1/18:0, Cer d18:1/24:0, and Cer d18:1/24:1, designed for routine analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.