Abstract
Osteoporosis is primarily diagnosed using dual-energy X-ray absorptiometry (DXA); yet, DXA is significantly underutilized, causing osteoporosis, an underdiagnosed condition. We aimed to provide an opportunistic approach to screen for osteoporosis using artificial intelligence based on lumbar spine X-ray radiographs. In this institutional review board-approved retrospective study, female patients aged ≥50 years who received both X-ray scans and DXAof the lumbar vertebrae, in three centers, were included. A total of 1180 cases were used for training and 145 cases were used for testing. We proposed a novel broad-learning system (BLS) and then compared the performance of BLS models using radiomic features and deep features as a source of input. The deep features were extracted using ResNet18 and VGG11, respectively. The diagnostic performances of these BLS models were evaluated with the area under the curve (AUC), sensitivity, and specificity. The incidence rate of osteoporosis in the training and test sets was 35.9% and 37.9%, respectively. The radiomic feature-based BLS model achieved higher testing AUC (0.802 vs. 0.654 vs. 0.632, both P=.002), sensitivity (78.2% vs. 56.4% vs. 50.9%), and specificity (82.2% vs. 74,4% vs. 75.6%) than the two deep feature-based BLS models. Our proposed radiomic feature-based BLS model has the potential to expand osteoporosis screening to a broader population by identifying osteoporosis on lumbar spine X-ray radiographs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.