Abstract

The aim of this study is to develop and validate a predictive model for the prediction of in-hospital mortality in patients with acute pancreatitis (AP) based on the intensive care database. We analyzed the data of patients with AP in the Medical Information Mart for Intensive Care-IV (MIMIC-IV) database and Electronic Intensive Care Unit Collaborative Research Database (eICU-CRD). Then, patients from MIMIC-IV were divided into a development group and a validation group according to the ratio of 8:2, and eICU-CRD was assigned as an external validation group. Univariate logistic regression and least absolute shrinkage and selection operator regression were used for screening the best predictors, and multivariate logistic regression was used to establish a dynamic nomogram. We evaluated the discrimination, calibration, and clinical efficacy of the nomogram, and compared the performance of the nomogram with Acute Physiology and Chronic Health Evaluation II (APACHE-II) score and Bedside Index of Severity in AP (BISAP) score. A total of 1030 and 514 patients with AP in MIMIC-IV database and eICU-CRD were included in the study. After stepwise analysis, 8 out of a total of 37 variables were selected to construct the nomogram. The dynamic nomogram can be obtained by visiting https://model.sci-inn.com/KangZou/. The area under receiver operating characteristic curve (AUC) of the nomogram was 0.859, 0.871, and 0.847 in the development, internal, and external validation set respectively. The nomogram had a similar performance with APACHE-II (AUC = 0.841, p = 0.537) but performed better than BISAP (AUC = 0.690, p = 0.001) score in the validation group. Moreover, the calibration curve presented a satisfactory predictive accuracy, and the decision curve analysis suggested great clinical application value of the nomogram. Based on the results of internal and external validation, the nomogram showed favorable discrimination, calibration, and clinical practicability in predicting the in-hospital mortality of patients with AP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.