Abstract

BackgroundNipah virus (NiV) is a zoonotic pathogen that poses a significant threat because of its wide host range, multiple transmission modes, high transmissibility, and high mortality rates, affecting both human health and animal husbandry. In this study, we developed a one-step reverse transcription droplet digital PCR (RT-ddPCR) assay that targets the N gene of NiV.ResultsOur RT-ddPCR assay exhibited remarkable sensitivity, with a lower limit of detection of 6.91 copies/reaction. Importantly, it displayed no cross-reactivity with the other 13 common viruses and consistently delivered reliable results with a coefficient of variation below 10% across different concentrations. To validate the effectiveness of our RT-ddPCR assay, we detected 75 NiV armored RNA virus samples, mimicking real-world conditions, and negative control samples, and the RT-ddPCR results perfectly matched the simulated results. Furthermore, compared with a standard quantitative real-time PCR (qPCR) assay, our RT-ddPCR assay demonstrated greater stability when handling complex matrices with low viral loads.ConclusionsThese findings show that our NiV RT-ddPCR assay is exceptionally sensitive and provides a robust tool for quantitatively detecting NiV, particularly in stimulated field samples with low viral loads or complex matrices. This advancement has significant implications for early NiV monitoring, safeguarding human health and safety, and advancing animal husbandry practices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.