Abstract
Domestic drinking water supply systems (DDWSs) are the final step in the delivery of drinking water to consumers. Temperature is one of the rate-controlling parameters for many chemical and microbiological processes and is, therefore, considered as a surrogate parameter for water quality processes. In this study, a mathematical model is presented that predicts temperature dynamics of the drinking water in DDWSs. A full-scale DDWS resembling a conventional system was built and run according to one year of stochastic demands with a time step of 10 s. The drinking water temperature was measured at each point-of-use in the systems and the data-set was used for model validation. The temperature model adequately reproduced the temperature profiles, both in cold and hot water lines, in the full-scale DDWS. The model showed that inlet water temperature and ambient temperature have a large effect on the water temperature in the DDWSs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.