Abstract

The purpose of this study is to develop and validate a deep convolutional neural network (DCNN) model to automatically identify the manufacturer and model of hip internal fixation devices from anteroposterior (AP) radiographs. In this retrospective study, 1721 hip AP radiographs, including six internal fixation devices from 1012 patients, were collected from an orthopedic center between June 2014 and June 2022 to establish a classification network. The images were divided into training set (1106 images), validation set (272 images), and test set (343 images). The model efficacy is evaluated by using the data on the test set. The overall TOP-1 accuracy, and the precision, sensitivity, specificity, and F1 score of each model are calculated, and receiver operating characteristic (ROC) curves are plotted to evaluate the model performance. Gradient-weighted class activation mapping (Grad-CAM) images are used to determine the image features that are most important for DCNN decisions. A total of 1378 (80%) images were used for model development, and model efficacy was validated on a test set with 343 (20%) images. The overall TOP-1 accuracy was 98.5%. The area under the receiver operating characteristic curve (AUC) values for each internal fixation model were 1.000, 1.000, 0.980, 1.000, 0.999, and 1.000, respectively. Gradient-weighted class activation mapping showed the unique design of the internal fixation device. We developed a deep convolutional neural network model that can identify the manufacturer and model of hip internal fixation devices from the hip AP radiographs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.