Abstract

The clinical ability of radiomics to predict intracranial aneurysm rupture risk remains unexplored. This study aims to investigate the potential uses of radiomics and explore whether deep learning (DL) algorithms outperform traditional statistical methods in predicting aneurysm rupture risk. This retrospective study included 1740 patients with 1809 intracranial aneurysms confirmed by digital subtraction angiography at two hospitals in China from January 2014 to December 2018. We randomly divided the dataset (hospital 1) into training (80%) and internal validation (20%). External validation was performed using independent data collected from hospital 2. The prediction models were developed based on clinical, aneurysm morphological, and radiomics parameters by logistic regression (LR). Additionally, the DL model for predicting aneurysm rupture risk using integration parameters was developed and compared with other models. The AUCs of LR models A (clinical), B (morphological), and C (radiomics) were 0.678, 0.708, and 0.738, respectively (all p < 0.05). The AUCs of the combined feature models D (clinical and morphological), E (clinical and radiomics), and F (clinical, morphological, and radiomics) were 0.771, 0.839, and 0.849, respectively. The DL model (AUC = 0.929) outperformed the machine learning (ML) (AUC = 0.878) and the LR models (AUC = 0.849). Also, the DL model has shown good performance in the external validation datasets (AUC: 0.876 vs 0.842 vs 0.823, respectively). Radiomics signatures play an important role in predicting aneurysm rupture risk. DL methods outperformed conventional statistical methods in prediction models for the rupture risk of unruptured intracranial aneurysms, integrating clinical, aneurysm morphological, and radiomics parameters. • Radiomics parameters are associated with the rupture risk of intracranial aneurysms. • The prediction model based on integrating parameters in the deep learning model was significantly better than a conventional model. • The radiomics signature proposed in this study could guide clinicians in selecting appropriate patients for preventive treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.