Abstract
Quality indicators should be assessed and monitored to improve colonoscopy quality in clinical practice. Endoscopists must enter relevant information in the endoscopy reporting system to facilitate data collection, which may be inaccurate. The current study aimed to develop a full deep learning-based algorithm to identify and analyze intra-procedural colonoscopy quality indicators based on endoscopy images obtained during the procedure. A deep learning system for classifying colonoscopy images for quality assurance purposes was developed and its performance was assessed with an independent dataset. The system was utilized to analyze captured images and results were compared with those of real-world reports. In total, 10,417 images from the hospital endoscopy database and 3157 from Hyper-Kvasir open dataset were utilized to develop the quality assurance algorithm. The overall accuracy of the algorithm was 96.72% and that of the independent test dataset was 94.71%. Moreover, 761 real-world reports and colonoscopy images were analyzed. The accuracy of electronic reports about cecal intubation rate was 99.34% and that of the algorithm was 98.95%. The agreement rate for the assessment of polypectomy rates using the electronic reports and the algorithm was 0.87 (95% confidence interval 0.83-0.90). A good correlation was found between the withdrawal time calculated using the algorithm and that entered by the physician (correlation coefficient r = 0.959, p < 0.0001). We proposed a novel deep learning-based algorithm that used colonoscopy images for quality assurance purposes. This model can be used to automatically assess intra-procedural colonoscopy quality indicators in clinical practice.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.