Abstract

Tumor fibrosis plays an important role in chemotherapy resistance in pancreatic ductal adenocarcinoma (PDAC), however there remains a contradiction in the prognostic value of fibrosis. We aimed to investigate the relationship between tumor fibrosis and survival in patients with PDAC, classify patients into high- and low-fibrosis groups, and develop and validate a CT-based radiomics model to non-invasively predict fibrosis before treatment. This retrospective, bicentric study included 295 patients with PDAC without any treatments before surgery. Tumor fibrosis was assessed using the collagen fraction (CF). Cox regression analysis was used to evaluate the associations of CF with overall survival (OS) and disease-free survival (DFS). Receiver operating characteristic (ROC) analyses were used to determine the rounded threshold of CF. An integrated model (IM) was developed by incorporating selected radiomic features and clinical-radiological characteristics. The predictive performance was validated in the test cohort (Center 2). The CFs were 38.22±6.89% and 38.44±8.66% in center 1 (131 patients, 83 males) and center 2 (164 patients, 100 males), respectively (P=0.814). Multivariable Cox regression revealed that CF was an independent risk factor in the OS and DFS analyses at both centers. ROCs revealed that 40% was the rounded cut-off value of CF. IM predicted CF with areas under the curves (AUCs) of 0.825 (95% confidence interval [CI], 0.749-0.886) and 0.745 (95% CI, 0.671-0.810) in the training and test cohorts, respectively. Decision curve analyses revealed that IM outperformed radiomics model and clinical-radiological model for CF prediction in both cohorts. Tumor fibrosis was an independent risk factor for survival of patients with PDAC, and a rounded cut-off value of 40% provided a good differentiation of patient prognosis. The model combining CT-based radiomics and clinical-radiological features can satisfactorily predict survival-grade fibrosis in patients with PDAC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.