Abstract

BackgroundAssociations between disease characteristics and payer-relevant outcomes can be difficult to establish for rare and progressive chronic diseases with sparse available data. We developed an exploratory bridging model to predict premature mortality from disease characteristics, and using inclusion body myositis (IBM) as a representative case study.MethodsCandidate variables that may be potentially associated with premature mortality were identified by disease experts and from the IBM literature. Interdependency between candidate variables in IBM patients were assessed using existing patient-level data. A Bayesian survival model for the IBM population was developed with identified variables as predictors for premature mortality in the model. For model selection and external validation, model predictions were compared to published mortality data in IBM patient cohorts. After validation, the final model was used to simulate the increased risk of premature death in IBM patients. Baseline survival was based on age- and gender-specific survival curves for the general population in Western countries as reported by the World Health Organisation.ResultsPresence of dysphagia, aspiration pneumonia, falls, being wheelchair-bound and 6-min walking distance (6MWD in meters) were identified as candidate variables to be used as predictors for premature mortality based on inputs received from disease experts and literature. There was limited correlation between these functional performance measures, which were therefore treated as independent variables in the model. Based on the Bayesian survival model, among all candidate variables, presence of dysphagia and decrease in 6MWD [m] were associated with poorer survival with contributing hazard ratios (HR) 1.61 (95% credible interval [CrI]: 0.84–3.50) and 2.48 (95% CrI: 1.27–5.00) respectively. Excess mortality simulated in an IBM cohort vs. an age- and gender matched general-population cohort was 4.03 (95% prediction interval 1.37–10.61).ConclusionsFor IBM patients, results suggest an increased risk of premature death compared with the general population of the same age and gender. In the absence of hard data, bridging modelling generated survival predictions by combining relevant information. The methodological principle would be applicable to the analysis of associations between disease characteristics and payer-relevant outcomes in progressive chronic and rare diseases. Studies with lifetime follow-up would be needed to confirm the modelling results.

Highlights

  • Associations between disease characteristics and payer-relevant outcomes can be difficult to establish for rare and progressive chronic diseases with sparse available data

  • The present communication describes a modelling study to assess the predictive potential of disease-related characteristics and outcomes, using inclusion body myositis (IBM) as a case of a rare, slowly progressive, chronic disease

  • We developed a predictive modelling and simulation tool we refer to as a “bridging model”, that bridged from early disease characteristics to mortality in IBM patients

Read more

Summary

Introduction

Associations between disease characteristics and payer-relevant outcomes can be difficult to establish for rare and progressive chronic diseases with sparse available data. We developed an exploratory bridging model to predict premature mortality from disease characteristics, and using inclusion body myositis (IBM) as a representative case study. Slowly progressive, rare and orphan diseases there is often only limited understanding of the full disease burden and natural disease evolution. These are important elements in informing clinical research, designing clinical studies and educating healthcare providers on unmet patient needs, as well as for assessing the value of new treatment options. The present communication describes a modelling study to assess the predictive potential of disease-related characteristics and outcomes, using inclusion body myositis (IBM) as a case of a rare, slowly progressive, chronic disease

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.