Abstract

Trematodes belonging to the family Echinostomatidae are food-borne parasites which cause echinostomiasis in animals and humans. This is a global public health issue, particularly in East and Southeast Asia. A method to detect the infective stage of Echinostomatidae species is required to prevent transmission to humans. In this study, a loop-mediated isothermal amplification coupled with a lateral flow dipstick (LAMP-LFD) assay was developed for visual detection of the metacercarial stage in edible snails of the genus Filopaludina from local markets in Thailand. The LAMP-LFD method can be performed within 70 min at a consistent temperature of 66 °C, and the results can be interpreted with the naked eye. The detection limits of the assay using Echinostoma mekongi, E. macrorchis, E. miyagawai and Hypoderaeum conoideum genomic DNA were equal between the four species at 50 pg/μL. A specificity evaluation demonstrated that the LAMP-LFD assay had no cross-reaction with another parasite (Thapariella species) or with the snail host species (Filopaludina martensi martensi, F. sumatrensis speciosa, and F. s. polygramma). Clinical test assessments were compared to microscopic examination in 110 edible snail samples. The clinical sensitivity and specificity of the tests were 84.62 % and 100 %, respectively, with a strong level of agreement based on the kappa statistic and the results of both methods were not significantly different (p > 0.05) per McNemar's test. The test successfully developed in this study may be useful for the detection of the metacercarial stage in edible snails for epidemiological investigations, control, surveillance, and to prevent future echinostomiasis health issues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call