Abstract

In this paper, exergy efficiencies, which are effective performance parameters for cryogenic processes, are categorized based on their exergy decomposition levels. However, the existing efficiencies are not standardized for a variety of unit operations. Thus, the extension of the exergy transfer effectiveness (ETE) has been suggested with a general mathematical expression. The extended ETE is defined by decomposing both thermo-mechanical and chemical exergy to the chemical component level. A case study with a complex natural gas liquefaction process and its optimization has also been performed. The results indicate that the extended ETE brings consistent and accurate results for all types of units, also properly reflecting the changes in process performance after optimization. Other efficiencies, however, struggle to measure the performance improvement for some equipment, even showing decreases in their efficiency values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.