Abstract
The performance of Speech Enhancement (SE) Algorithms is evaluated using various objective and subjective evaluation parameters. Recently, few objective evaluation parameters are developed for the measurement of speech quality and intelligibility. But still, there are ample scopes determining statistical parameters to predict the SNR of a noisy speech signal without using any reference of clean signal and noise. In this paper, this problem has been addressed and three types of Artificial Neural Networks (ANN) are developed for efficient prediction of the estimated SNR (E-SNR) of a given noisy speech signal. To further improve the accuracy of prediction of the SNR of the ANN, the coefficients of ANN are tuned using the bio-inspired optimization technique. In this paper, a popular and efficient Grey wolf Optimization is chosen for the purpose. Several audio features are studied and appropriate features are chosen as the inputs to the ANN. Finally, a comparative performance analysis is carried out using two standard speech databases and the best performing ANN and audio features are identified to provide the best ESNR.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.