Abstract

Turbine inlet temperatures over the next few years will approach 1650°C (3000°F) at maximum power for the latest large commercial turbo fan engines, resulting in high fuel efficiency and thrust levels approaching 445 kN (100,000 lbs). High reliability and durability must be intrinsically designed into these turbine engines to meet operating economic targets and ETOPS certification requirements. This level of performance has been brought about by a combination of advances in air cooling for turbine blades and vanes, design technology for stresses and airflow, single crystal and directionally solidified casting process improvements and the development and use of rhenium (Re) containing high γ′ volume fraction nickel-base superalloys with advanced coatings, including full-airfoil ceramic thermal barrier coatings. Re additions to cast airfoil superalloys not only improve creep and thermo-mechanical fatigue strength but also environmental properties, including coating performance. Re dramatically slows down diffusion in these alloys at high operating temperatures. A team approach has been used to develop a family of two nickel-base single crystal alloys (CMSX-4® containing 3% Re and CMSX®−10 containing 6% Re) and a directionally solidified, columnar grain nickel-base alloy (CM 186 LC® containing 3% Re) for a variety of turbine engine applications. A range of critical properties of these alloys is reviewed in relation to turbine component engineering performance through engine certification testing and service experience. Industrial turbines are now commencing to use this aero developed turbine technology in both small and large frame units in addition to aero-derivative industrial engines. These applications are demanding, with high reliability required for turbine airfoils out to 25,000 hours, with perhaps greater than 50% of the time spent at maximum power. Combined cycle efficiencies of large frame industrial engines is scheduled to reach 60% in the U.S. ATS programme. Application experience to a total 1.3 million engine hours and 28,000 hours individual blade set service for CMSX-4 first stage turbine blades is reviewed for a small frame industrial engine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.