Abstract

The use of nanoparticles in composite electrodes for Li batteries may have considerable kinetic advantages due to the reduction of the diffusion length for lithium insertion in the active mass, and also because of the reduction of the overall charge transfer resistance of the electrodes. We report herein on the synthesis of various types of nanomaterials for rechargeable lithium batteries and their testing as active mass in anodes and cathodes. These include SnO, VO x , Li x MnO 2, and various types of carbon nanotubes. Sonochemistry was applied for the synthesis of part of the nanophases. The tools for this study included X-ray diffraction (XRD), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and standard electrochemical techniques (CV, SSCV, chronopotentiometry and impedance spectroscopy).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.