Abstract
Robotic machining of relatively small features on large components potentially offers an opportunity to reduce capital expenditure in various industries. A barrier to this is the inability of robotic machine tools to machine to the tolerances of conventional equipment. This paper proposes and tests a photogrammetry-based metrology assistance algorithm to compensate for robotic machining inaccuracy, as measured in the part, and investigates the associated measurement challenges. The algorithm is executed in a two stage process, whereby the closest point to nominal cutting coordinates on an aligned inspection surface is used for compensation, created a penultimate measured cut. Finally, the finishing program coordinates are compensated to correct under-cuts during the measured cut stage. Conceptual tests using simulated measurement data give confidence that the proposed approach works well. In experiments, a key area for further R&D effort is found to be uneven inspect point coverage, which results in alignment issues and a poor surface finish. Ultimately, direction is given to improve measurement system performance to enable the metrology assistance approach proposed to be implemented and therefore the benefits of “process-to-part” robotic machining to be realised.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.