Abstract

Abstract New regulations are being issued by the Federal Aviation Administration (FAA) that require three-dimensional hydrometeor-phase diagnosis, including discrimination between freezing rain (FZRA) and freezing drizzle (FZDZ), for all commercial airports in the United States. Herein, a novel hydrometeor-phase algorithm, the spectral bin classifier (SBC), is adapted to meet these requirements. First, the SBC’s particle size distribution (PSD) is upgraded to be variable rather than fixed. This, along with some changes to the logic, allows for drizzle (DZ)/FZDZ to be diagnosed. Second, the SBC is modified to provide a low-altitude (LA), aboveground diagnosis (SBC-LA). Last, necessary changes to account for resolution issues in NWP thermal profiles are presented. Adding a dynamic-PSD capability improves the probability of detection (POD) by about 12%, but adapting the algorithm to include DZ/FZDZ worsens the PODs. This is due to potentially errant reports of rain (RA)/FZRA in environments that are more conducive to DZ/FZDZ. Assuming a diagnosis of DZ is a hit when RA is observed, and likewise for FZRA/FZDZ, increases the POD by between 35% and 60%. Although performance statistics for SBC-LA cannot be computed, about one-third of all RA and DZ soundings herein have an elevated layer of FZRA/FZDZ, underscoring the importance of an aboveground diagnosis for the aviation sector. The comparatively low vertical resolution of NWP profiles is found to degrade the SBC’s performance. Interpolating to a higher resolution helps to mitigate this problem. Several case studies of mixed phases at different airports are presented to highlight the enhanced decision support made possible by the above modifications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.