Abstract

SummaryWhat do you do after plunger lifting? What if lift gas is not readily available or your liquid level is around a bend? What can you do with a well that has low reservoir pressure, liquid-loading trouble, and fragile economics? Do you give up on the remaining reserves and advance to plugging and abandonment? These questions were considered, and the answers were found to be unsatisfactory. This paper will describe the development and testing of a novel wireline-deployed positive-displacement pump (WLPDP) that was invented to address these challenges.Artificial-lift (AL) pumps have historically been developed with high-producing oil wells in mind. Pumps for late-life wells have mostly been repurposed from these applications and optimized for reduced liquids production. The WLPDP development began with the constraints of late-life wells with the goal of addressing reserves that conventional AL methods would struggle to produce profitably. Internal and industry-wide data were first reviewed to determine what WLPDP specifications would address the majority of late-life wells. The primary target was gas wells, although “stripper” oil wells were also considered. The resulting goal was a pump that could deliver 30 BFPD from 10,000-ft true vertical depth (TVD).The pumping system must be cost-effective to be a viable solution, which led to several design boundaries. Pumps fail and replacement costs can drive economics, so the system must be deployable/retrievable through tubing. The majority of new onshore wells have tortuous geometries, so the system must be able to function at the desired depth despite them—without damaging associated downhole components. The system should use as many off-the-shelf components and known technologies as possible to reduce development costs and encourage integration. Finally, the pump should be able to handle a variety of wellbore liquids, produced gases, and limited solids.The WLPDP was designed to meet the established specifications and boundary conditions. The 2.25-in.-outer-diameter (OD) pump is deployed through tubing. and powered with a standard wireline (WL) logging cable. The cable powers a direct-current (DC) motor that drives an axial piston pump. The piston pump circulates a dielectric oil between two bladders by means of a switching valve. When each bladder expands, it pressurizes inlet-wellbore liquids, pushing them out of the well. Produced gas flows in the annulus between the tubing and production casing. The intake/discharge check valves and bladders are the only internal pump components that contact the wellbore fluids.The WLPDP system was able to meet the design-volume/pressure specifications in all orientations, as confirmed through laboratory and integration testing. Targeted studies were conducted to verify/improve check-valve reliability, gas handling, elastomer suitability, and cable-corrosion resistance. The results of these and related studies will be discussed in the paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.