Abstract
BackgroundCervical myelopathy is a progressive disease, and early detection and treatment contribute to prognosis. Evaluation of cervical intervertebral instability by simple X-ray is used in clinical setting and the information about instability is important to understand the cause of myelopathy, but evaluation of the intervertebral instability by X-ray is complicated. To reduce the burden of clinicians, a system that automatically measures the range of motion was developed by comparing the flexed and extended positions in the lateral view of a simple X-ray of the cervical spine. The accuracy of the system was verified by comparison with spine surgeons and residents to determine whether the system could withstand actual use.MethodsAn algorithm was created to recognize the four corners of the vertebral bodies in a lateral cervical spine X-ray image, and a system was constructed to automatically measure the range of motion between each vertebra by comparing X-ray images of the cervical spine in extension and flexion. Two experienced spine surgeons and two residents performed the study on the remaining 23 cases. Cervical spine range of motion was measured manually on X-ray images and compared with automatic measurement by this system.ResultsOf a total of 322 cervical vertebrae in 46 images, 313 (97%) were successfully estimated by our learning model. The mean intersection over union value for all the 46-test data was 0.85. The results of measuring the CRoM angle with the proposed cervical spine motion angle measurement system showed that the mean error from the true value was 3.5° and the standard deviation was 2.8°. The average standard deviations for each measurement by specialist and residents are 2.9° and 3.2°.ConclusionsA system for measuring cervical spine range of motion on X-ray images was constructed and showed accuracy comparable to that of spine surgeons. This system will be effective in reducing the burden on and saving time of orthopedic surgeons by avoiding manually measuring X-ray images.Trial registration Retrospectively registered with opt-out agreement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.