Abstract
The MIUR PRIN 4DInSiDe collaboration aims at developing the next generation of 4D (i.e., position and time) silicon detectors based on Low-Gain Avalanche Diodes (LGAD) that guarantee to operate efficiently in the future high-energy physics experiments. To this purpose, different areas of research have been identified, involving the development, design, fabrication and test of radiation-hard devices. This research has been enabled thanks to ad-hoc advanced TCAD modelling of LGAD devices, accounting for both technological issues as well as physical aspects, e.g. different avalanche generation models and combined surface and bulk radiation damage effects modelling. In this contribution, it is reviewed the progress and the relevant detector developments obtained during the research activities in the framework of the 4DInSiDe project. • TCAD modelling for the design of radiation-hard LGAD sensors for 4D tracking. • Gain layer compensation, (p + - and n + -doping) to preserve the gain at high fluences. • New design approach to resistive read-out sensors: DC-coupled RSD. • DC-RSD employs a direct coupling of the resistive layer to the read-out pads. • DC-coupled low resistivity strips between read-out pads to improve the resolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.