Abstract
Abstract An error model for spatial databases is defined here as a stochastic process capable of generating a population of distorted versions of the same pattern of geographical variation. The differences between members of the population represent the uncertainties present in raw or interpreted data, or introduced during processing. Defined in this way, an error model can provide estimates of the uncertainty associated with the products of processing in geographical information systems. A new error model is defined in this paper for categorical data. Its application to soil and land cover maps is discussed in two examples: the measurement of area and the measurement of overlay. Specific details of implementation and use are reviewed. The model provides a powerful basis for visualizing error in area class maps, and for measuring the effects of its propagation through processes of geographical information systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International journal of geographical information systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.