Abstract

Recent developments in the infrastructure urged the requirement of developing concrete with high performance. This research work presents the development of sustainable High Strength Fiber Reinforced Concrete (HSFRC), and its mechanical properties such as compressive strength, tensile strength and flexural strength compared to conventional High Strength Concrete (HSC). Ordinary Portland Cement (OPC) was replaced with optimum amount ofMicro-Silica (MS) and Pumice Powder(PP) by 15% and 10%. Hybrid Fibers (HF) are added in the mix of 1.5% by volume of concrete. The fibers used are Steel Fiber (SF), Poly-Propylene Fiber (PPF), Basalt Fiber (BF) and Carbon Fiber (CF). Effect of fiber and its performance are compared with conventional HSC. A concrete mix with optimum content of ingredients is desired to satisfy the strength and workability. Compressive strength of mix with HF combination of SF and PPFis found to be higher than other mixes. Mix with SF and BF exhibited higher tensile strength. Contribution of fibers was confirmed by SEM analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.