Abstract

Purpose This study aims to develop geopolymer concrete (GPC) using manufactured sand (M-sand) and recycled concrete aggregate (RCA) under different curing conditions. GPC is a sustainable construction material developed with industrial waste products such as fly ash to eliminate the use of cement in the production of concrete. GPC requires heat curing for the attainment of early age strength. The development of GPC under heat curing conditions is a hard process in practice. To overcome such circumstances, an attempt was made to develop the GPC under different curing conditions with the aid of coarse aggregate (CA) and RCA. The influence of different curing conditions on strength gain and microstructural characteristics of GPC is investigated. Mechanical properties of GPC such as compressive strength, tensile strength, flexural strength and elastic modulus are reported and discussed. Design/methodology/approach This study focuses on the assessment of mechanical and microstructure characterization of eco-efficient GPC developed with natural CA and RCAs. The required optimum quantity of binder, alkali activator, alkaline liquid to binder ratio and aggregates was determined by appropriate trials. Three types of curing methods, namely, ambient, oven and water, were used for the development of GPC mixes. Following the properties of RCA, it is realistic to substitute up to 40% of coarser aggregates as the resulting aggregate mix falls within the requirements of the analyzed mix. Findings Special attention is required for the mix with RCA because the mix’s consistency is affected by the high water absorption of the RCA mix. GPC specimens cured at ambient and water conditions exhibited marginal variation in the compressive strength for both CA and RCA. The compressive strength of GPC mixes prepared with RCA was marginally higher than that of the GPC made with CA under different curing regimes. RCA can be used as a sustainable material in lieu of CA in GPC. Originality/value The main significance of this research work is to develop the optimal mix design with appropriate mix proportion. The present study proposes a satisfactory methodology that enhances the mechanical strength of GPC as the guidelines are not available in the standards to address this problem. Effective use of waste materials such as fly ash and recycled aggregate for the development of GPC is another major research focus in the proposed investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.