Abstract

Abstract Deep learning (DL) has revolutionized advanced digital picture processing, enabling significant advancements in computer vision (CV). However, it is important to note that older CV techniques, developed prior to the emergence of DL, still hold value and relevance. Particularly in the realm of more complex, three-dimensional (3D) data such as video and 3D models, CV and multimedia retrieval remain at the forefront of technological advancements. We provide critical insights into the progress made in developing higher-dimensional qualities through the application of DL, and also discuss the advantages and strategies employed in DL. With the widespread use of 3D sensor data and 3D modeling, the analysis and representation of the world in three dimensions have become commonplace. This progress has been facilitated by the development of additional sensors, driven by advancements in areas such as 3D gaming and self-driving vehicles. These advancements have enabled researchers to create feature description models that surpass traditional two-dimensional approaches. This study reveals the current state of advanced digital picture processing, highlighting the role of DL in pushing the boundaries of CV and multimedia retrieval in handling complex, 3D data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.