Abstract

Substance P (SP), the putative neuropeptide mediator of pain sensation, is contained in small dorsomedial sensory neurons of the dorsal root ganglion. Using different culture techniques and a sensitive radioimmunoassay for SP, we studied the ontogeny and regulation of this functionally important neurotransmitter in these neurons, obtained from neonatal rats. In ganglion explants grown by two different techniques, SP increased two- to threefold during the first week in culture. This rise was predominantly due to mechanisms intrinsic to the ganglion since it occurred in a fully defined medium, in the absence of added nerve growth factor (NGF). Blockade of protein synthesis with cycloheximide prevented the increase in SP suggesting that ongoing protein synthesis was necessary. Furthermore, depolarization with veratridine blocked the increase in SP, an effect which was reversed by tetrodotoxin, suggesting that transmitter characteristics in sensory neurons may be regulated by depolarization and/or transmembrane sodium flux. After a week in culture on a collagen substratum, supplementary NGF was necessary for the continued rise in SP. However, raising the dose of the trophic factor had no incremental effect on SP content, suggesting that NGF was acting primarily on neuronal survival. To approach such questions at the cellular level, ganglia were dissociated and grown in cell culture. In all cultures, SP increased 1.5-fold during the first day. In the absence of NGF, however, SP and cell numbers fell progressively after the second day. NGF elicited parallel increases in cell survival and SP content, supporting the suggestion that NGF acts primarily through neuronal survival to increase SP. Veratridine blocked the increase in SP in a tetrodotoxin-reversible manner, without affecting neuronal survival, indicating that the effects of these agents do not depend on normal ganglionic cellular architecture. Consequently, depolarization probably affects ganglionic sensory neurons directly. Our studies suggest that the development of transmitter characteristics in primary sensory neurons may be regulated by multiple factors, including neuronal activity as well as trophic agents such as NGF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.