Abstract

To shed unfertilized flowers or ripe fruits, many plant species develop a pedicel abscission zone (AZ), a specialized tissue that develops between the organ and the main body of the plant. Regulation of pedicel abscission is an important agricultural concern because pre-harvest abscission can reduce yields of fruit or grain crops, such as apples, rice, wheat, etc. Tomato has been studied as a model system for abscission, as tomato plants develop a distinct AZ at the midpoint of the pedicel and several tomato mutants, such as jointless, have pedicels that lack an AZ. This mini-review focuses on recent advances in research on the mechanisms regulating tomato pedicel abscission. Molecular genetic studies revealed that three MADS-box transcription factors interactively play a central role in pedicel AZ development. Transcriptome analyses identified activities involved in abscission and also found novel transcription factors that may regulate AZ activities. Another study identified transcription factors mediating abscission pathways from induction signals to activation of cell wall hydrolysis. These recent findings in tomato will enable significant advances in understanding the regulation of abscission in other key agronomic species.

Highlights

  • Similar to leaves, flowers and young fruits shed when the organs become unneeded or as a result of environmental stresses; for example, failure of pollination results in abscission of the unfertilized flowers

  • Anatomical studies revealed that an abscission zone (AZ) includes several layers of small, densely cytoplasmic cells that forms at an early stage of pedicel development and proliferation of the cells is observed during fruit development (Addicott, 1982; Sexton and Roberts, 1982; Tabuchi and Arai, 2000; Patterson, 2001)

  • At an early stage of AZ initiation, these MADS-box genes are co-expressed in vascular tissue derived from the L3 layer required for AZ development (Szymkowiak and Irish, 1999; Liu et al, 2014)

Read more

Summary

Development and regulation of pedicel abscission in tomato

Tomato has been studied as a model system for abscission, as tomato plants develop a distinct AZ at the midpoint of the pedicel and several tomato mutants, such as jointless, have pedicels that lack an AZ. This mini-review focuses on recent advances in research on the mechanisms regulating tomato pedicel abscission. Another study identified transcription factors mediating abscission pathways from induction signals to activation of cell wall hydrolysis. These recent findings in tomato will enable significant advances in understanding the regulation of abscission in other key agronomic species

Introduction
Pedicel AZ Structure and Development in Tomato
Genes Expressed in Tomato Pedicel AZs
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call