Abstract

The concept of metal–carbon eutectic temperature fixed point has been introduced in 1999 and is extensively being investigated by thermometry researchers to cover the high-temperature range above copper fixed point. Metal–carbon eutectic fixed points also helped to provide direct traceability with reduced associated uncertainty in the high temperature range for thermometry and radiometry applications. In view of this, CSIR-National Physical Laboratory, India (NPLI) has developed iron–carbon (Fe–C, 1153 °C) eutectic fixed point cell in the graphite crucible and realized by using the noble metal thermocouples. The preparation parameters such as design and fabrication of a graphite crucible, Fe:C eutectic composition and filling procedure, furnace profile, melting and freezing plateau measurements, heat flux immersion, inhomogeneity, etc. have been optimized and presented in this paper. The measurement uncertainty of the Fe–C eutectic cell realized with Type-S thermocouple was estimated to be 3.04 μV (0.25 °C) at coverage factor k = 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.