Abstract

Abstract Objectives Gram-positive sporulated bacilli can cause many different diseases and isolation from environmental samples is difficult. Therefore, the quick detection and diagnosis of these microorganisms have critical importance because of their potentially harmful situation. However, many accepted diagnostic methods exist, and future technology points to immunoassay systems. Immunological methods to detect biological microorganisms require antigen-specific high-affinity antibodies as key materials. Methods In this study, Bacillus anthracis (34F2 sterne) bacterium, which causes anthrax disease, was chosen as a model organism to develop antibodies against bacterial spores. The produced spores were inactivated with gamma irradiation, and the development of monoclonal antibodies against inactivated spores was performed using hybridoma technology. Also, the polyclonal antibody was successfully obtained by immunizing the rabbit. Indirect and sandwich ELISA tests were performed to determine the antigenic properties of inactivated spores and the specific affinity of the developed antibodies. Results The spores, inactivated with 15 kGy, have the best-preserved surface epitopic regions and were selected as immunogen. Developed monoclonal and polyclonal antibodies were shown that there was no cross-reaction with other Bacillus species. Also, it was demonstrated that these antibodies could detect inactivated spores at a concentration of 105 spores/mL in a sandwich ELISA assay. Conclusions These qualified antibodies obtained will be essential in developing antibody-based diagnostic systems for spore detection from various environmental samples. This study suggests that the inactivated spores are a decent immunogen for generation antibodies and may be a candidate component for live vaccine formulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.