Abstract
Abstract. The bin filler, which is used for filling the fruit container or bin with apples coming from the sorting system, plays a critical role in the self-propelled apple harvest and in-field sorting (HIS) machine that is being developed in our laboratory. Two major technical challenges in developing the bin filler are limited space in the HIS machine and high throughput. A literature review showed that despite many different types of bin fillers currently available for in-field use, none of them is suitable for the HIS machine because of their large size, use of the bin rotating design concept, and high unit cost. Effort has thus been made on the development of new bin filling technology for use with the HIS machine. The new bin filler mainly consists of a mechanical system with a pinwheel design and an automatic control system. A key innovation in the mechanical system is the use of two foam rollers to catch freely falling apples, which has greatly simplified the bin filler design and also made the system compact and lower in cost. The control system is mainly composed of an onboard Arduino microcontroller and three sensors (one infrared sensor and two Hall effect sensors) to monitor and measure the status of apples filling the bin as well as the rotational speed of the pinwheel. A program was developed for the Arduino microcontroller to record and process the data from the sensors in real-time to achieve automatic control of the bin filling. Laboratory tests with ‘Gala’ apples demonstrated that 97% of apples that had been handled by the new bin filler were rated Extra Fancy grade, and its performance exceeded the industry’s requirement for bruising damage to apples. Keywords: Apples, Automatic control, Bin filling, Bruising, Harvest, Sensors, Sorting and grading.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.