Abstract

The fusion-reactor blanket is very important, as it is responsible for the tritium self-sustaining, energy gain, and radiation shielding. Due to the complex structure, large geometry size and inhomogeneous neutron-flux distribution, the Monte-Carlo method is widely used for the neutronics analysis of fusion-reactor blanket, but it takes a large amount of computational time for acceptable simulation results. The deterministic code is the better choice for the fusion-reactor blanket. The geometry capability and accuracy limitation are the most important issues for the deterministic code to simulate the fusion-reactor blanket. Therefore, the newly deterministic code named NECP-FISH has been developed for the fusion-reactor blanket, in which the spherical harmonic function and finite element method were applied. Moreover, the open-source platform SALOME has been applied to generate the complex geometry as pre-process of NECP-FISH. As code verification, NECP-FISH has been applied to simulate the Breeding Unit of HCCB-DEMO, using Monte-Carlo code to provide the reference results. It can be observed that the simulation results of the tritium breeding ratio (TBR), neutron flux and heat release rate provided by NECP-FISH are agreed well with corresponding values by the Monte-Carlo code.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.