Abstract

Therapeutic immunization of HIV-1-infected individuals with or without anti-retroviral therapy is a new promising disease prevention. To induce a new cytotoxic T CD8 lymphocyte (CTL) immunity during chronic HIV-1 infection 15 infrequently targeted but conserved HLA-supertype binding CTL epitopes from Gag, Pol, Nef, Env, Vpu and Vif were identified. The 15 T CD8 and three T CD4 helper peptides were GMP synthesised and formulated with a new adjuvant CAF01 which is a synthetic two-component liposomic adjuvant comprising the quaternary ammonium dimethyl-dioctadecyl-ammonium (DDA) and the immune modulator trehalose 6,6′-dibehenate (TDB). Using IFN-γ ELISPOT assay, T-cell immune induction by the vaccine was found to both CD4 and CD8 T-cell restricted peptides in HLA-A2 transgenic mice. Comprehensive toxicity studies of the CAF01 adjuvant-alone and together with different vaccines showed that CAF01 when tested at human dose levels was safe and well tolerated with only local inflammation at the site of injection and no systemic reactions. No pharmacological safety issues were observed in Beagle dogs. The HIV-1 vaccine toxicity study in the Göttingen Minipig ® showed no systemic toxicity from five repetitive i.m. injections, each with a 2-week interval, of either the 18 HIV-1 peptide antigen solution (AFO18) or the AFO18–CAF01, in which the 18 HIV-1 peptides were formulated with the CAF01 adjuvant. Distinct inflammatory responses were observed in the injected muscles of the AFO18–CAF01 vaccine treated animals as a result of the immune stimulating effect of the adjuvant on the vaccine. The results of the toxicity studies provide optimism for phase I clinical trials evaluating the therapeutic HIV-1 T-cell vaccination approach using multiple subdominant minimal epitope peptides applying the novel cationic adjuvant CAF01.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.