Abstract

In an attempt to develop new folate radiotracers with favorable biochemical properties for detecting folate receptor-positive cancers, we have synthesized [(124)I]-SIB- and [(124)I]-SIP-folate conjugates using a straightforward and two-step simple reactions. Radiochemical yields for [(124)I]-SIB- and [(124)I]-SIP-folate conjugates were greater than 90 and 60% respectively, with total synthesis time of 30-40min. Radiochemical purities were always greater than 98% without HPLC purification. These synthetic approaches hold considerable promise as rapid and simple method for (124)I-folate conjugate preparation with high radiochemical yield in short synthesis time. In vitro tests on KB cell line showed that the significant amounts of the radioconjugates were associated with cell fractions. In vivo characterization in normal Balb/c mice revealed rapid blood clearance of these radioconjugates and favorable biodistribution profile for [(124)I]-SIP-folate conjugate over [(124)I]-SIB-folate conjugate. Biodistribution studies of [(124)I]-SIP-folate conjugate in nude mice bearing human KB cell line xenografts, demonstrated significant tumor uptake. The uptake in the tumors was blocked by excess injection of folic acid, suggesting a receptor-mediated process. These results demonstrate that [(124)I]-SIP-folate conjugate may be useful as a molecular probe for detecting and staging of folate receptor-positive cancers, such as ovarian cancer and their metastasis as well as monitoring tumor response to treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call