Abstract

Pear lace bug, Stephanitis pyri (F.) (Heteroptera: Tingidae) is a pest of apple and pear trees and ornamental Rosaceae plants in Mediterranean countries and palearctic region. The aim of this study is to determine the effects of temperatures on S. pyri in the laboratory. Development and fecundity of S. pyri reared on apple leaves (Pyrus malus L.) were investigated at five constant temperatures (20, 23, 26, 29 and 32 ± 1°C) and a 16L:8D photoperiod. Longevity was determined to be 12.6 days at 32°C and 58.7 days at 20°C for females, and 9.7 and 37.7 days for males. Females laid 186.9 eggs per female with the highest number achieved during 28.5 days of oviposition period at 26°C. Female lifetime fecundity was reduced at 32°C (40.0 eggs per female). While the net reproductive rate (R0) was highest at 26°C, the intrinsic rate of natural increase (rm) was highest at both 26 and 32°C. The mean generation time (G) was estimated to be 27.2–78.4 days at 20 and 32°C, respectively. The longest development times for egg and total nymph stages were obtained as 22.0 and 24.9 days, respectively, at 20°C. S. pyri developed fastest from egg to egg in 24.3 days at 32°C. The lower developmental threshold (T0) was 9.7°C and the thermal constant (K) was 517.3 degree-days for S. pyri. Thus, S. pyri is calculated to have 3.8 theoretical generations in Tekirdag. The optimum developmental temperature for S. pyri was 26°C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call