Abstract

Background: Vitamin D3 plays a role in immunity, especially in the body's regulation of the inflammatory response. The limitations of vitamin D3 are poor bioavailability and water-insoluble. Nanostructured Lipid Carriers (NLC) can increase the solubility of water-insoluble active ingredients. Objective: To develop NLC as a delivery agent of vitamin D3 for topical application. Method: NLC was created using a high-shear homogenisation method with various lipid ratios. NLC uses solid lipids (Monostearin) and liquid lipids (Miglyol 812) with variations in the ratios of F1 (7:3), F2 (8:2) and F3 (9:1).  NLC is expected to be able to protect the active ingredients in the lipid matrix so that the stability of the active ingredients increases. Characterisation was performed in organoleptic, pH, particle size, viscosity, zeta potential, and entrapment efficiency. Result: Vitamin D3 NLC system had good characteristics: pH suitable for topical use, particle size < 600nm, PI < 0.5, Zeta potential -26.80 to -33.76. F1 resulted in the highest entrapment efficiency of 82.18%. Conclusion: Vitamin D3 NLC systems with different lipid concentration ratios affect the physical and chemical characteristics. Increasing the liquid lipid content in the Vit D3 NLC system can reduce particle size and viscosity and increase entrapment efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call