Abstract

Micro pixel chambers (μ-PIC) with resistive cathodes have been developed as particle tracking/imaging detectors in high-rate high ionizing particle (HIP) environments. A main target of their development is as a forward muon detector in the ATLAS phase-2 upgrade. The cathode is made from DLC (diamond-like carbon) thin foil by the liftoff method. Using the resistive cathodes, the discharge (spark) probability within the HIP environment was reduced (10-1000 times) and two-dimensional readouts for the incident particles are available using a 400-micron pitch separated pixel array. We measured the tracking performances for the charged particles using a 140 GeV muon beam in CERN’s H4 beam line and also measured the imaging properties of 8 keV X-rays. Two-dimensional fine position resolutions (< 100 micron) were obtained. These results show that the resistive μ-PIC is one of strong candidate for forthcoming high-rate particle experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call