Abstract

This work focuses on the development of three unique types of high vacuum shock tubes for materials research. Shock tubes of various types such as simple material shock tube (MST), with extension (MST-E) and with reduction (MST-R) are studied. The major aim of this paper focuses on the augmentation of test time (tIE), reflected shock pressure (P5), and temperature (T5) and to get an ideal shock strength for material interaction. The simple MST has a 2.1 m driver and 5.1 m driven sections of inner diameter 80 mm, MST-E has a driver extension of 2.3 m long, and MST-R is equipped with an area reduction at the end of the driven section having a convergent nozzle for shock focusing with an addition of 1.2 m long tube. All the experiments are performed with air as a test gas at 1.0 bar. The experimental results show a variation of tIE of about 10% between the simple MST and MST-E. The MST-R shows an increase of P5 and T5 of about 60% and 15%, respectively, in the presence of air. Experimental results are compared with the 1-D normal shock relations (NSR) and KASIMIR software for validation. The results also show about 10–40% discrepancy between experiments and the various tools in all configurations. The experimental and theoretical results of all the three shock tube configurations are discussed in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.