Abstract

AbstractImportant advances have been made in SOFC development utilizing a ceramic framework based upon yttria zirconia (YSZ) electrolytes supported upon porous YSZ electrode skeletons. This ceramic framework is sintered at high temperatures with subsequent impregnation and low temperature processing of the active electrode materials. Here we seek to develop this impregnated electrode concept by investigating a novel scaffold material similar to the main corrosion product of ferritic stainless steel. The chromium rich spinel (MnFeCrO4) was used as an electrode support material, either alone or impregnated with (La0.75Sr0.25)0.97Cr0.5Mn0.5O3‐δ, La0.8Sr0.2FeO3‐δ, Ce0.9Gd0.1O2‐δ, CeO2 and/or Pd. In these initial studies it was found that all of the impregnated phases adhere very well to the spinel and considerably enhance performance and stability to a level sufficient for SOFC applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call