Abstract

This paper presents the development and performance measurements of a beta-type free-piston Stirling engine (FPSE) along with dynamic model predictions. The FPSE is modeled as a two degrees-of-freedom (2DOF) vibration system with the equations of motion for displacer and piston masses, which are connected to the spring and damping elements and coupled by working pressure. A test FPSE is designed from root locus analyses and developed with flexure springs and a dashpot load. The stiffness of the test springs and the damping characteristics of the dashpot are identified through experiments. An experimental test rig is developed with an electric heater and a water cooler, operating under the atmospheric air. The piston dynamic behaviors, including the operating frequency, piston stroke, and phase angle, and engine output performance are measured at various heater temperatures and external loads. The experimental results are compared to dynamic model predictions. The test FPSE is also compared to a conventional kinematic engine in terms of engine output performance and dynamic adaptation to environments. Incidentally, nonlinear dynamic behaviors are observed during the experiments and discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.