Abstract

A low-temperature proton exchange membrane fuel cell (LT-PEMFC) is a promising clean and effective technology for power generation because of its simplified water and heat management. Due to the non-uniform of H2 and air distributions within fuel cells, the stack design is one of the key factors to enhance the performance and efficiency of LT-PEMFC. In this study, a single, two cells, 6 cells and 11 cells LT-PEMFC stack was investigated with cell active area 114cm2, Nafion membrane 112 and catalyst loading 0.4mg/cm2 working at 25°C and atmospheric pressure using hydrogen and air as a fuel and oxidant, respectively. The power output that is obtained from each stack is presented and the overall power output is compared with single cell stack. The stack prototype has been fabricated, constructed and tested producing a maximum value of 70W electrical power using 11 cells stack.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call